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A two-coloring of the vertices X of the hypergraph H = ( X , o  °) by red and blue has dis- 
crepancy d if d is the largest difference between the number of red and blue points in any edge. 
A two-coloring is an equipartition of H if it has discrepancy 0, i.e., every edge is exactly half red and 
half blue. Letf(n) be the fewest number of edges in an n-uniform hypergraph (all edges have size n) 
having positive discrepancy. Erd6s and S6s asked: is f(n) unbounded? We answer this question in 
the affirmative and show that there exist constants cl and c2 such that 

ea log (snd (n/2)) ~ log 3 (snd (n/2)) 

log log (snd (n/2)) - f (n) ~ cz log log (snd (n/Z)) 

where snd (x) is the least positive integer that does not divide x. 

1. Introduction and Main Results 

A number of recent papers have been concerned with the problem of two-coloring 
the vertices of a hypergraph H=(X, 8) by red and blue so that for every edge E 
of H the number of red points in E is roughly equal to the number of blue points. The 
discrepancy of a two-coloring is the maxinmm difference between the number of 
red points and blue points in any edge. The discrepancy of a hypergraph is the mini- 
mum discrepancy of any two-coloring. There have been several results relating dis- 
crepancy to other parameters of a hypergraph (number of vertices, maximum degree) 
and computing discrepancy for special classes of hypergraphs (see, e.g., [2], [3], [7], 
[9,] [10l). 

The focus of this paper is hypergraphs of discrepancy zero, i.e. those that 
admit a two-coloring of the vertex set such that every edge is divided exactly in 
half. Such a coloring is called an equi-partition of H. For instance, the hypergraphs 
with X= {1, 2 . . . . .  2n} and ~f the set of all intervals of even length is equi-partitioned 
by coloring the odd numbers red and the even numbers blue. We are interested in 
the function f(n), defined to be the fewest number of edges in an n-uniform hyper- 
graph (all edges have size n) that admits no eqni-partition. Trivially for n odd, 
f ( n ) = l .  Note also that f(n)<=n+l for any n since a hypergraph with IX l=n+ l  
and g consisting of all n element subsets of X cannot be equi-partitioned. 
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Much stronger upper bounds onf(n)  for large classes of n are easily obtained 
by construction. For instance, if n is twice an odd number then f(n)<_-3; more 
generally, the following simple constructive result shows that f(n) is small whenever 
some small number fails to divide n. 

Proposition 1.1. For n even, f ( n ) ~ l + s n d  (n/2), where snd (x) is" the smallest pos- 
itive integer that does not divide x. 

Proof. Let k be the smallest non-divisor of n/2 and let n = a k + r  where O<=r<k. 
Let Xa, X2 . . . . .  X k +  1 be disjoint sets such that IXaI=IX21 . . . .  =lXr l=a+l  and 
IX,+l[=lY,+2l . . . .  =lXk+ll=a.  Let X--XIUX2U. . .UXk+IU{z}  where z is not 
a member of any X~. Define an n-uniform hypergraph H = ( X , g )  with edges 
E1, E~ . . . .  ,Ek+~ where E ~ = X - X i  if l ~ i ~ r  and E i = X - X ~ - z  if r < i ~ k + l .  
Suppose X = R U B  is an equi-partition of H; we derive a contradiction. Assume 
without loss of generality that zER. Then [E~NB[=n/2 for a l l j  and so [~(jNB[= 
= i X N B I - I E j N B I = [ X N B I - n / 2  is the same for all j. Then 

n/2 = [EjABI = Z [X, NBI = k( lXNBI-n/2)  

contradicting the hypothesis that k does not divide n/2. II 

Lower bounds on f (n) are not so easy to obtain. Indeed, this difficulty led 
Erd6s and S6s [4] to pose the question: Is f (n)  unbounded? From Proposition 1.1, 
f (n) is bounded on the sequence n~, n2 . . . .  if there exists a number k that divides 
none of the n~. We prove the converse. 

Theorem 1.2. I f  n~, nz . . . .  is a sequence of integers such that every &teger k divides 
at least one of them then {f(ni) } is unbounded. 

In Section 2 we present the first of two proofs of Theorem 1.2. The proof is 
based on a limit argument and has the undesirable (yet intriguing) feature that it 
gives no information about the growth rate off(n) beyond the fact that it is unbound- 
ed. The remainder of the paper is devoted to the derivation of upper and lower 
bounds onf(n). All of the bounds we obtain can be expressed in terms of the quantity 
snd (n/2). As stated above, f (n)= 1 if n is odd and f ( n ) =  3 if n -  2 rood 4. Our 
result is: 

Theorem 1.3. There exist constants e~ and e2 such that for n =_ 0 rood 4, 

log snd ( 2 )  log3snd ( 2 )  
el <= f(n) <- e2 

l°g l°g snd ( 2 )  l°g log snd ( 2 )  

Observe that the lower bound in Theorem 1.3 immediately implies Theorem 
1.2. Note also that the upper bound is a substantial improvement over Proposition 1.1. 

The prime number theorem immediately gives snd(n/2)-<( l+o(1)) logn.  
For infinitely many n this result is best possible. (If n is twice the least common mul- 
tiple of the numbers less than k then snd (n/2)>k=(1 +o(1))log n.) From this we 
can conclude. 
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Theorem 1.4. There exist constants cl, cz>0 such that for all n->10 

(log log n) 3 
f (n)  <- c2 log log log n 

and for infinitely many values of n 

log log n 
f (n)  ~ cl log log log n 

The lower bound for f (n)  of Theorem 1.3 is obtained by considering the 
relationship o f f  to another function g defined as follows. A two-coloring X =  R 0 B 
of an n-uniform hypergraph H is uniform if IRfqEI is the same for every edge in 8 
(and is neither 0 nor n). In particular an equi-partition is a uniform coloring. A hyper- 
graph that admits a unifornl coloring is reducible, and otherwise it is irreducible. 
Let g(n) be the fewest number of edges in an n-uniform hypergraph that is irredu- 
cible. Clearly g(n)>=f(n). Let 

~,(n) = rain g(m). 

Ifg(n) is monotone then ~,(n)=g(n); we do not know whether this is the case. The 
main result of Section 3 is 

Theorem 1.5. f (n)  >-_~ (snd (n/Z)). 

The function g has been studied extensively (in the literature the results are 
typically discussed in terms of the dual hypergraph; see [5] for a survey). The follow- 
ing bound was proved by Huckemann, Jurkat and Shapley (cf. [5]; see also [1] for 
an alternate proof). 

Theorem 1.6. I f  n=>(k+l)(k+l)/z then g (n)~k ,  and so ~(n)>=clogn/loglogn 
for some constant c. 

The lower bound of Theorem 1.3 is an immediate corollary of Theorems 1.5 
and 1.6. 

In Section 4, the upper bound of Theorem 1.3 is proved by a number theoretic 
argument. Section 5 presents some open questions. 

2. Proof  of  Theorem 1.2. 

Without loss of generality we can assume that for every integer k, k divides 
n i for allj=>k. To see this replace the sequence nl, m . . . .  by the sequence whose U h 
term is the first term of {n;[i=>l} that is divisible by the least common multiple 
(lcm) of 1, 2 . . . . .  k. Clearly, i f f(n)  is unbounded on this sequence, it is unbounded 
on the original sequence. So let nl, n2 . . . .  be a sequence of integers such that nk is 
divisible by all integers less than or equal to k and suppose f(n) is bounded for all 
nj. Let q be a bound. Then for each j, there exists an n j-uniform hypergraph H j 
with q edges that is not equi-partitionable. We will derive a contradiction by showing 
that for some j, H j has an equi-partition. 
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Let E~, Eg . . . . .  E~ be the edges of H ~ and for I ~  {1, 2 . . . . .  q} define AI to 
be the set 

~ E / -  U E,, 
iEi i¢l  

that is, A~ is the set of vertices belonging to exactly the edges {E]li~I}. Note that 
the sets A1 for 1~  {1 . . . . .  q} partition the vertex set of H. Defining the vector 
aJ-(a41I= {1, 2 . . . . .  q}) by setting a~= IA~I we have that for each i, 

nj = IE/I = z~ a~. 
XliE1 

Now, a two-coloring BtJ R of the vertices of H j is essentially defined by the 
numbers b~=[BDAil. Using this correspondence we have that H~ has an equi- 
partition if and only if there exists an integer vector b l = ( ~ ] I ~  {1 . . . . .  q}) such that 

(2.1) o ~ b~ <_- a~ 
and for each iE {1 . . . . .  q} 

(2.2) • b~ = rift2. 
t]i~I 

We now prove that for some j there exists a vector b j as above, so that H i 
has an equi-partition. For each j,  let v J=  aJ/nj. Each vector vJ satisfies 

Z ~ = I  
Ili~I 

for i=  1, 2 . . . . .  q. By the Bolzano--Weierstrass theorem ([8], pg. 35), there is an 
infinite subsequence j , , j2  . . . .  of integers such that the sequence of vectors v gl, v J2 . . . .  
converges to some vector v*, which also satisfies ~ v~=l  for i = l ,  2 . . . .  , q. 

lliEl 
Let w be a rational vector satisfying (1/2)v~<=w1<=(3/4)v~ for each 1. Then the 
system 

1 
xI = i =  1,2, q 

Ibicl 2 " '  " ' "  

O<-x~<=w,, I ~  {1,2 . . . . .  q} 

has a solution, namely x =  v*/2. Since all of the inequalities and equalities of the 
system are given by rational coefficients, there must be a rational solution vector r. 
Let k be the smallest integer such that kr is an integer vector. Now since vJ~, vg, . . . .  
converges to v* there is an index h such that vgh->(3/4)v*=>w, and such that jh>=k. 
Now the fact that king for j~k  implies that the vector bJ~=nj, r is integral, and 
vJ,_->w and the choice of r imply that (2.1) and (2.2) are satisfied and thus H i ,  has 
an equi-partition, a contradiction, establishing Theorem 1.2. II 
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3. Proof of  Theorem 1.5. 

Let H =  (X, g) be a hypergraph. For Y~ X let Hr be the hypergraph with 
vertex set Y and edge set g r =  {Ef~ YIEEg}. Then we have 

Lemma 3.1. Let H= {X, g} be an n-uniform hypergraph and let k be an integer such 
that lg[<~(k-t-1). Then X can be partitioned into sets Xt, X2 .. . .  , Xt such that 
Hx, is ni-uniform with ni<=k with every i. 

Proof. By induction on n. If  n~=k the result is trivial. I f  n>k  then since 
[g[<~,(k+l)<=g(n), H is reducible and so X can be partitioned into sets Y and Z 
so that Hy and H z are each uniform with edge sizes less than n. Applying the in- 
duction hypothesis to Hr and Hz proves the lemma. | 

Now let k = s n d  ( n / 2 ) - I  and let H=(X, g) be an n-uniform hypergraph 
with fewer than ~ ( k +  1) edges. We want to show that H has an equi-partition. By 
Lemma 3.1, Xcan  be partitioned into sets )(1 . . . . .  Xt such that Hx, is n~-uniform with 

t 
ni<snd(n/2). Note that n=z~n  ~. It suffices to find a set I={1  . . . . .  t} such that 

z~ni=n/2, since then we get an equi-partition by letting R =  I,.JX~ and 
i E l  i E I  

k 

B =  [._) X~. Let aj be the number of ni's that equal j. Then ~ j a j = n  and the exist- 
i¢i l=t 

ence of an equi-partition follows from: 

Lemma 3.2. Let n, k be positive integers such that 1, 2 ... . .  k divide n/2. Let at, a2 . . . .  
• .., ak be nonnegative integers such that ~ ia~=n. Then there exist integers bt, b2 . . . .  , bk 
with ONbj <-aJ such that 

k 

~ jbj = n/2. 
j = t  

Proof. Let A(n, k) be the set of all sequences satisfying the hypothesis and order the 
sequences lexicographically, i.e. (at . . . . .  ak)>(a~ . . . . .  a£) if aj>a~ where j is the 
smallest index in which the two sequences differ. Suppose the theorem is false and 
let (a t . . . . .  ak) be the lexicographically least counterexample. Then 

(3.1) ai < n/2i for all i 

since if aj>=n/2j then bi=n/2 j, bi=O for i # j  would satisfy the conclusion of the 
theorem. Furthermore 

(3.2) ai -_> k for at most one index j. 

For  suppose, to the contrary, that aj, ah>=k where j~h .  Define (a~ . . . . .  a~,) by 
a~=an-j, aj=aj+h and a[=ai for i ch , j .  By the lexicographic minimality of 
(al . . . .  ,ak), there exist integers (b'~,b~ .. . .  ,b~) with O<=b~<=al and z~ib~=n/2. 
If bj~aj then b'~ai for all i a contradiction. On the other hand, if bj>aj then 
the sequence (bl . . . . .  bk) given by bj=b~-h, bh=b'h+j and bi=b; for i c h , j  
satisfies the conclusion of the lemma, again a contradiction. 
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By (3.1) and (3.2) we have 

k k 

n = Z iai < n / 2 + ( k -  1) Z i, 
i=1 i=1 

SO 

(3.3) n < kS-k .  

However, n>=2lcm (1, 2 . . . . .  k), so we have 

1 
(3.4) ~-(k 3 -  k) > Icm (t ,  2 . . . . .  k). 

This implies that k=2 ,  3, 4 or 6. (For lcm(l, 2 . . . . .  k) is the product of all maximal 
prime powers less than or equal to k. The largest power o f p  less than or equal to k 
is at least (k+l) /p  and thus 

(k + 1) 8 
lcm(1,2 .. . .  'k)>- 2 . 3 . 5 . 7 . 1 1 . 1 3 . 1 7 . 1 9  

which with (3.4) implies that k-<21. Checking all values of k up to 21 yields k =  
=2,  3, 4, or 6.) 

For k = 2  and k = 3  the theorem is trivial. For k=4 ,  (3.3) implies that 
n<60  so n is 24 or 48. For k = 6 ,  (3.3) implies that n<210 so n=120. In these 
cases, simple ad hoc arguments (left to the reader) show that the lemma holds. Thus 
(al . . . . .  a,) is not a counterexample and the lemma is true. II 

4. An upper bound for f(n) 

Here we prove the upper bound onf(n)  given by Theorem 1.3. We need some 
additional definitions. Let dr' denote the set of all matrices M with entries in {0, I} 
such that the equation M x - e  has exactly one nonnegative solution. (Here e is 
the vector with all entries equal to 1.) This unique solution is denoted x M. Let d(M) 
be the least integer such that d (M)x  M is integral and let y~r=d(M)x~r. For each 
positive integer n, let t(n) be the least r such that there exists a matrix MCo,/I with r 
rows such that d(M)=n.  (For instance, the ( n + l )  by (n + l) matrix with O's on 
the diagonal and l 's off the diagonal has d(M)=n,  so t (n )~n+l ) .  Our upper 
bound on f(n) is an immediate consequence of the following three results. 

Theorem 4.1. Let n be a natural number and m be an integer such that [n/m I (the 
greatest integer less than or equal to n/m) is odd. Then f(n)<-t(m). 

Lemma 4.2. For any positive integer n, there exists an integer m<-[snd (n/2)] 2 such 
that In/m] is odd. 

Theorem 4.3. t(m)= O(log ~ m/log log m). 

Proof of Theorem 4.1. Let M C ~ '  be a matrix with t(m) rows such that d(M)=m.  
Let c be the number of columns of M. We use M to construct an n-uniform hyper- 
graph with t(m) edges having no equi-partition. 
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Let n=am+r  where O<=r<m and a=[n/m] is odd. Let Y1, Y2 . . . . .  Yc, 
Z be disjoint sets with [Yjl=amx~ and [Zl=r. Define a hypergraph H=(X,~ ' )  
where X=Y~UY2U.. .UYcUZ and J' has edges E~, E~ . . . . .  Et(,,) given by 

For  each i, 

lEvi = 

Ei = (JlMU=:t ~)UZ" 

z~ amx~+r  = am ~ Mux'j"+r = am+r  = n, 
JIMu=I j=x 

SO H is n-uniform. We claim that H has no equi-partition. 
Suppose the two-coloring X = R U B  is an equi-partition of H. Let Y= 

=YxUY2U...UYc. For  each edge, [EiNR]=n/2 so [EiNRNY[=n/2-[ZNR[.  
For l<=j<-c, let z~=IYjNRI/(n/2-]ZNR]). Then 

1 = IE~NRNYI/(n/2-IZNRI)  = Z z~ = ~ M u z  j. 
j ]Mi,/=l j = l  

Thus Mz=e and since MCJ4', z=x  M. Now IYjNRI=zj(n/2-1ZNRI) is an 
integer for eachj  and m is the least integer such that mzj is integral, so (n/2 - ] Z  N Rl)/m 
must be an integer. Symmetrically, (n/2-[ZNB[)/m is also an integer. Their dif- 
ference ( [ZNRI- IZNBI) /m is an integer and since 0_~[Zl<m, we have [ZNR[=  
=]ZNBl=r/2 .  Thus (n /2 - lZNRl ) /m=(n-r ) /2m=am/2m=a/2  is an integer, 
contradicting the fact that a is odd. Therefore H has no equi-partition. | 

Proof of Lemma 4.2. Let s=snd  (1l/2). I f s  is a power of 2 then letting m=s we 
have [n/ml =n/m is odd. I f  s is not a power of 2, let 2J be the smallest power of  2 
that exceeds s. Then n/2J is an integer and n/(21s)=q+(a/s) where q is an integer 
and a is a positive integer less than s. Let i be the smallest integer such that a2 ~ >s. 
Clearly i=>l and a2i/s<2. Taking m=2J-ls  we obtain m<=s 2 and 

In~m] [n/2J-ls] [2i q + a2' ] . . . .  21q+ 1. II 

Proof of Theorem 4.3. The upper bound on t(m) is obtained by construction. Let 
ql, qz . . . .  , qk be positive integers. Let M(ql, q2 . . . . .  qk) be the q~+q2+...+qk+k 
by ql+q, .+. . .+qk+k matrix with k diagonal blocks, the fn  block being a q j + l  
by qj + 1 identity matrix, and all off-block entries equal to 1. A routine computation 
shows that M(ql . . . . .  qk)xM=e has a unique nonnegative sohLtion and 

d(M(q~, ..., qk)) = Icm(q~, .,., qk) + k - 1  . 

Hence if m is any positive integer and ql, q2 . . . . .  qk are positive integers such that 

m = Icm(ql, ..., qk) - - + k - 1  
\i=1 qi ) 

then t(m)<--q~+q2+... +q~+k. Thus Theorem 4.3 follows from the following 
number theoretic result. 
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Lemma 4.4. For every natural number m, there exist natural numbers qz, q2 . . . . .  qk 
such that 

m = lcm(ql . . . .  , qk) k -  1+.._~'--~. 

k 

and k + ~, qi =O(log 3 m/log log m). 
l = 1  

Proof. Let p~ denote the i th prime, and Li denote the product of  the first i primes. 
Say we let u of the q's equal 1 and vi of the q's equal Pz for i =  1 . . . . .  h. Then 

h 

(4.1) k = u+ ~ v s .  
i = 1  

We want to choose h, u, vl . . . .  , v h with all of the v; non-zero so that 

(4.2) 

and so that 

(4.3) 
h 

2u+ ~ vi(pi + 1) = O(log 3 m/log log m). 
i = 1  

In the analysis below, we will need the following facts which are elementary 
consequences of the prime number theorem [I]. 

Lemma 4.5. I f  Lh=C then 

(i) h = ( l + o ( l ) ) l o g  C]loglogC; 

(ii) Ph = ( l + o (1)) log C; 

(iii) ~ P i  = +o(1)  log 2 C/loglog C; 
i = i  

(iv) z~Pi = +o(1)  log3C/loglogC. | 
t = 1  

Continuing with the proof  of lemma 4.4, we observe that to satisfy (4.2), it is 
enough to find vl . . . . .  N such that 

(4.4) m => Lh -- 1 + vi + 
"=  i = 1  

and 

i=1 ~=1 ~ rood 2L n 

since then u can be chosen to make (4.2) hold. Since 2Lh=4p2pa...ph, (4.5) holds if 
and only if the following set of congruences hold: 

(4.6) m--=Lh - - 1 +  v~+ m o d p j  for 2_~j_<-h 
"= t = 1  
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and 

(4.7) m--  Lh(--1 + ,=x z~vi+,=, ~ v__~) rood4. 

These congruences can be simplified to 

(4.8) m -- vjLh/pj modpj  for 2 =<j <= h 

(4.9) m - (3vl--2)Lh/2 mod4. 

For each 2<=j<=h there is a unique number vj between 1 and p~ that satisfies 
(4.8) and a unique number vz between 1 and 4 satisying (4.9). Now for vi chosen 
in these ranges 

(4.10) Ln ( - 1  + ~ v, + ~ v, ] n i=1 i~---l"-~tl ~Lh(5+  ,=z~ P i + h -  1)" 

To satisfy (4.4), it is sufficient to choose h so that the right hand side of (4.10) is less 
than or equal to m. Assume m is large and choose h to be the largest integer for 
which Lh<m log log mflog ~ m. Then from Lemma 4.5, h=log mflog log m(1 +o(1)) 
and 

i=1 

Thus the right hand side of (4.10) is at most (m/2)+o(m), so that (4.4) and hence 
(4.2) holds. Finally 

h m h 
2u+ • v,(p,+ 1) ~ + 1 2 +  ~(p~+p, )  = 

t=1 ~ i=2 

h 

mph+~ t-6+ Z(P~+Pi) <= 
L h + l  i = l  

h 
mph+~ + 6 +  ~__,(P'~+Pi) = 

m log log m/log 2 m i=1 

= O(log 3 m/log log m) 

by Lemma 4.5, which is (4.3). II 

5. Open questions 

The first obvious question is to resolve the disparity between the upper and 
lower bounds of Theorem 1.3. It is not possible to substantially improve the lower 
bound by improving the lower bound on g(n) because there is a known upper bound 
on g(n) of log n. On the other hand, it seems likely that the upper bound on f(n) 
can be improved by improving the upper bound on t(m) through better construc- 
tions. In fact, it seems quite reasonable to expect that t(n) behaves much the same as 
g(n), which would imply that the true behavior off(n) is close to the lower bound. 
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The appearance o f  snd (n/2) in both  the upper  and lower bounds  suggests 
that  f ( n )  is a function only o f  snd (n/2) and this would  be interesting to know.  
I f  so, i s f (n )  an increasing function o f  snd (n/2)? A weaker but  still interesting result 
would be to  show that  f satisfies f ( a + b ) ~ _ m i n  ( f ( a ) , f ( b ) ) .  

Another  question we would like to see resolved: Is g(n) a mono tone  function 
o f  n? 
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